1. Li MH, Xiao R, Li JB, Zhu Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage 2017;25:1577–1587.
[Article] [PubMed]
2. Lee JJ, Lee SJ, Lee TJ, Yoon TH, Choi CH. Results of microfracture in the osteoarthritic knee with focal full-thickness articular cartilage defects and concomitant medial meniscal tears. Knee Surg Relat Res 2013;25:71–76.
[Article] [PubMed] [PMC]
3. Mithoefer K, Williams RJ 3rd, Warren RF, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 2005;87:1911–1920.
[Article] [PubMed]
4. Pässler HH. Microfracture for treatment of cartilage detects. Zentralbl Chir 2000;125:500–504.
[PubMed]
5. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003;19:477–484.
[Article] [PubMed]
6. Bae DK, Yoon KH, Song SJ. Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy 2006;22:367–374.
[Article] [PubMed]
7. Steadman JR, Rodkey WG, Briggs KK. Microfracture: its history and experience of the developing surgeon. Cartilage 2010;1:78–86.
[Article] [PubMed] [PMC]
8. Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 2000;212–234.
[Article]
9. Vasara AI, Nieminen MT, Jurvelin JS, Peterson L, Lindahl A, Kiviranta I. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 2005;233–242.
[Article]
10. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 2010;38:1117–1124.
[Article] [PubMed]
11. Minas T, Von Keudell A, Bryant T, Gomoll AH. The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 2014;472:41–51.
[Article] [PubMed]
12. Behery OA, Harris JD, Karnes JM, Siston RA, Flanigan DC. Factors influencing the outcome of autologous chondrocyte implantation: a systematic review. J Knee Surg 2013;26:203–211.
[Article] [PubMed]
13. Saris DB, Vanlauwe J, Victor J, Almqvist KF, Verdonk R, Bellemans J. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 2009;37(Suppl 1):10S–19S.
[Article] [PubMed]
14. Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 2008;36:235–246.
[Article] [PubMed]
15. Enea D, Cecconi S, Busilacchi A, Manzotti S, Gesuita R, Gigante A. Matrix-induced autologous chondrocyte implantation (MACI) in the knee. Knee Surg Sports Traumatol Arthrosc 2012;20:862–869.
[Article] [PubMed]
16. Gigante A, Bevilacqua C, Cappella M, Manzotti S, Greco F. Engineered articular cartilage: influence of the scaffold on cell phenotype and proliferation. J Mater Sci Mater Med 2003;14:713–716.
[Article] [PubMed]
17. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res 2005;96–105.
[Article]
18. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 2006;13:203–210.
[Article] [PubMed]
19. Tsumaki N, Okada M, Yamashita A. iPS cell technologies and cartilage regeneration. Bone 2015;70:48–54.
[Article] [PubMed]
20. Roberts S, Menage J, Sandell LJ, Evans EH, Richardson JB. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee 2009;16:398–404.
[Article] [PubMed] [PMC]
21. Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 2003;22:81–91.
[Article] [PubMed]
22. Caplan AI, Goldberg VM. Principles of tissue engineered regeneration of skeletal tissues. Clin Orthop Relat Res 1999;(Suppl 367):S12–S16.
[Article]
23. Liu H, Liu J, Qi C, Fang Y, Zhang L, Zhuo R. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater 2016;35:228–237.
[Article] [PubMed]
24. Izadifar Z, Chen X, Kulyk W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater 2012;3:799–838.
[Article] [PubMed] [PMC]
25. Yoon JJ, Nam YS, Kim JH, Park TG. Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture. Biotechnol Bioeng 2002;78:1–10.
[Article] [PubMed]
26. Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 2005;26:3075–3082.
[Article] [PubMed]
27. Morille M, Toupet K, Montero-Menei CN, Jorgensen C, Noël D. PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis. Biomaterials 2016;88:60–69.
[Article] [PubMed]
28. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 2002;290:763–769.
[Article] [PubMed]
29. Zhang Z, McCaffery JM, Spencer RG, Francomano CA. Hyaline cartilage engineered by chondrocytes in pellet culture: histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants. J Anat 2004;205:229–237.
[Article] [PubMed] [PMC]
30. Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vécsei V. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 2002;10:62–70.
[Article] [PubMed]
31. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998;238:265–272.
[Article] [PubMed]
32. Ke H, Wang P, Yu W, Liu X, Liu C, Yang F. Derivation, characterization and gene modification of cynomolgus monkey mesenchymal stem cells. Differentiation 2009;77:256–262.
[Article] [PubMed]
33. Mueller MB, Tuan RS. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum 2008;58:1377–1388.
[Article] [PubMed] [PMC]
34. Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE. Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem Cells 2007;25:2786–2796.
[Article] [PubMed]
35. Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol 1976;47:327–359.
[Article] [PubMed]
36. Solchaga LA, Penick KJ, Welter JF. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods Mol Biol 2011;698:253–278.
[Article] [PubMed] [PMC]
37. Nam Y, Rim YA, Ju JH. Chondrogenic pellet formation from cord blood-derived induced pluripotent stem cells. J Vis Exp 2017;19.
[Article]
38. Nam Y, Rim YA, Jung SM, Ju JH. Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res Ther 2017;8:16.
[Article] [PubMed] [PMC]
39. Nam Y, Jung SM, Rim YA, Jung H, Lee K, Park N. Intraperitoneal infusion of mesenchymal stem cell attenuates severity of collagen antibody induced arthritis. PLoS One 2018;13:e0198740.
[Article] [PubMed] [PMC]
40. Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg 2009;79:235–244.
[Article] [PubMed]
41. Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng Part A 2010;16:1009–1019.
[Article] [PubMed]
42. Nejadnik H, Diecke S, Lenkov OD, Chapelin F, Donig J, Tong X. Improved approach for chondrogenic differentiation of human induced pluripotent stem cells. Stem Cell Rev 2015;11:242–253.
[Article] [PubMed] [PMC]
43. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006;24:376–385.
[Article] [PubMed]
44. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211–228.
[Article] [PubMed]
45. Aust L, Devlin B, Foster SJ, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 2004;6:7–14.
[Article] [PubMed]
46. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294–1301.
[Article] [PubMed]
47. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 2002;20:530–541.
[Article] [PubMed]
48. Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 2003;5:362–369.
[Article] [PubMed]
49. Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res 2003;196–212.
[Article]
50. Black LL, Gaynor J, Adams C, et al. Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther 2008;9:192–200.
[PubMed]
51. van Buul GM, Siebelt M, Leijs MJ, et al. Mesenchymal stem cells reduce pain but not degenerative changes in a mono-iodoacetate rat model of osteoarthritis. J Orthop Res 2014;32:1167–1174.
[Article] [PubMed]
52. Freitag J, Bates D, Boyd R, et al. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy - a review. BMC Musculoskelet Disord 2016;17:230.
[Article] [PubMed] [PMC]
53. Vangsness CT Jr, Farr J 2nd, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am 2014;96:90–98.
[Article] [PubMed]
54. Lee J, Kim Y, Yi H, et al. Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2014;16:R41.
[Article] [PubMed] [PMC]
55. Rim YA, Park N, Nam Y, Ju JH. Generation of induced-pluripotent stem cells using fibroblast-like synoviocytes isolated from joints of rheumatoid arthritis patients. J Vis Exp 2016.
[Article]
56. Rim YA, Nam Y, Ju JH. Induced pluripotent stem cell generation from blood cells using sendai virus and centrifugation. J Vis Exp 2016;(118):54650.
[Article]
57. Kim Y, Rim YA, Yi H, Park N, Park SH, Ju JH. The generation of human induced pluripotent stem cells from blood cells: an efficient protocol using serial plating of reprogrammed cells by centrifugation. Stem Cells Int 2016;2016:1329459.
[Article] [PubMed] [PMC]
58. Kim J, Kim Y, Choi J, et al. Recapitulation of methotrexate hepatotoxicity with induced pluripotent stem cell-derived hepatocytes from patients with rheumatoid arthritis. Stem Cell Res Ther 2018;9:357.
[Article] [PubMed] [PMC]
59. Kim Y, Park N, Rim YA, et al. Establishment of a complex skin structure via layered co-culture of keratinocytes and fibroblasts derived from induced pluripotent stem cells. Stem Cell Res Ther 2018;9:217.
[Article] [PubMed] [PMC]
60. Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 2010;19:469–480.
[Article] [PubMed] [PMC]
61. Karow M, Chavez CL, Farruggio AP, et al. Site-specific recombinase strategy to create induced pluripotent stem cells efficiently with plasmid DNA. Stem Cells 2011;29:1696–1704.
[Article] [PubMed] [PMC]
62. Rim YA, Nam Y, Park N, Lee J, Park SH, Ju JH. Repair potential of nonsurgically delivered induced pluripotent stem cell-derived chondrocytes in a rat osteochondral defect model. J Tissue Eng Regen Med 2018;12:1843–1855.
[Article] [PubMed]
63. Ko JY, Kim KI, Park S, Im GI. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials 2014;35:3571–3581.
[Article] [PubMed]
64. Zhu Y, Wu X, Liang Y, et al. Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes. BMC Biotechnol 2016;16:78.
[Article] [PubMed] [PMC]
65. Yamashita A, Morioka M, Yahara Y, et al. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Reports 2015;4:404–418.
[Article] [PubMed] [PMC]
66. Nam Y, Rim YA, Lee J, Ju JH. Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int 2018;2018:8490489.
[Article] [PubMed] [PMC]